



#### **Overview**

The key to making leak-proof connections with hydraulic couplings is to tighten the couplings properly at the time of installation. An over-tightened coupling may be just as likely to leak as an under-tightened coupling and may result in over-stressing and/or cracking.

The torque values in the following tables give minimum and maximum torque recommendations. The minimum value will create a leak-proof seal under most conditions. Applying torque values greater than the maximum recommendation will distort and/or crack the fitting. Values listed

in SAE J514 are for qualification testing only and should not be used as the basis for setting up torque values for a production environment. These need to be established based on the coupling manufacturer's recommendations.

When tightening couplings, make sure that the hose does not twist on the adapter. Twisting will shorten hose life and scar the sealing surfaces of swivel-type couplings (JIC 37°, 45°, etc.), which can create leaks. For straight couplings, use a torque wrench on the hex and/or swivel nut and a standard box wrench on the stem hex. Bent tube couplings can be restrained by holding onto the ferrule.

### **Torque Adjustments**

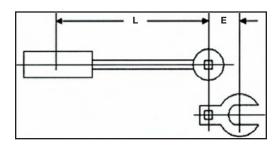


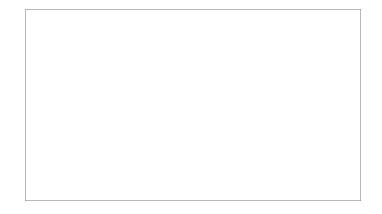
When a crowfoot wrench is used with a torque wrench, adjustments to the torque readings must be made to avoid over-tightening.

As shown below, the distance 'E', from the center of the drive socket to the center of the crowfoot, must be added to the torque value reading.

The following equation can be used to make these adjustments:

Actual Torque =  $(E + L) \div L$  (torque wrench reading) where:

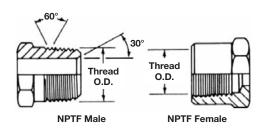

L is in inches, feet or meters


E is in inches, feet or meters Torque is in lb.-in., lb.-ft. or Newton-Meters

Example: Torque Wrench Reading = 45 lb.-ft.

Actual Torque =  $[(1.5 + 12) \div 12]^* 45 = 50.6$  lb.-ft.

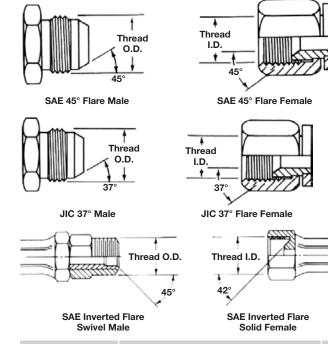
This example shows that the actual torque is approximately 10% higher than the reading indicates. All torque recommendations are based on dry threads. If oil or thread sealant is used, the maximum recommended torque values could be decreased by as much as 25%. We recommend lubricating all O-rings prior to insertion into flange heads and O-ring face seal grooves. This will minimize the possibility of nicking the O-ring when it is installed.








# Coupling and Adapter Torque Recommendations

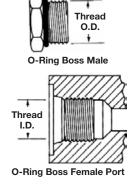

**Dry NPTF (Tapered) Pipe Threads** 



| Dash | Size<br>(Inches) | FtLbs. | Newton-Meters |
|------|------------------|--------|---------------|
| -2   | 1/8              | 20     | 25            |
| -4   | 1/4              | 25     | 35            |
| -6   | 3/8              | 35     | 45            |
| -8   | 1/2              | 45     | 60            |
| -12  | 3/4              | 55     | 75            |
| -16  | 1                | 65     | 90            |
| -20  | 1-1/4            | 80     | 110           |
| -24  | 1-1/2            | 95     | 130           |
| -32  | 2                | 120    | 160           |

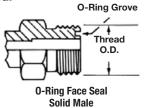
The torque values obtained from tightening pipe threads can vary considerably depending on the condition of the threads. Adequate sealing can occur at values much lower than the maximum values listed in the chart. However, the minimum torque values must be used to obtain adequate sealing.

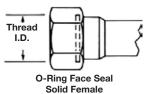
#### 37° and 45° Flare, 45° Inverted Flare




| Size |                        | Steel  |      |               |      | Brass  |      |               |      |
|------|------------------------|--------|------|---------------|------|--------|------|---------------|------|
|      | Fractional<br>(Inches) | FtLbs. |      | Newton-Meters |      | FtLbs. |      | Newton-Meters |      |
| Dash |                        | Min.   | Max. | Min.          | Max. | Min.   | Max. | Min.          | Max. |
| -4   | 1/4                    | 10     | 11   | 13            | 15   | 5      | 6    | 7             | 9    |
| -5   | 5/16                   | 13     | 15   | 18            | 20   | 7      | 9    | 10            | 13   |
| -6   | 3/8                    | 17     | 19   | 23            | 26   | 12     | 15   | 17            | 20   |
| -8   | 1/2                    | 34     | 38   | 47            | 52   | 20     | 24   | 28            | 33   |
| -10  | 5/8                    | 50     | 56   | 69            | 76   | 34     | 40   | 46            | 55   |
| -12  | 3/4                    | 70     | 78   | 96            | 106  | 53     | 60   | 72            | 82   |
| -16  | 1                      | 94     | 104  | 127           | 141  | 74     | 82   | 101           | 111  |
| -20  | 1-1/4                  | 124    | 138  | 169           | 188  | 75     | 83   | 102           | 113  |
| -20  | 1-1/2                  | 156    | 173  | 212           | 235  | 79     | 87   | 107           | 118  |
| -32  | 2                      | 219    | 243  | 296           | 329  | 158    | 175  | 214           | 237  |




## Coupling and Adapter Torque Recommendations (cont.)


SAE O-Ring Boss



| Size |                     | Working Pressures<br>4,000 PSI (27.5 MPa) and Below |      |               |      | Working Pressures<br>Above 4,000 PSI (27.5 MPa) |      |               |      |
|------|---------------------|-----------------------------------------------------|------|---------------|------|-------------------------------------------------|------|---------------|------|
|      | Fractional (Inches) | FtLbs.                                              |      | Newton-Meters |      | FtLbs.                                          |      | Newton-Meters |      |
| Dash |                     | Min.                                                | Max. | Min.          | Max. | Min.                                            | Max. | Min.          | Max. |
| -3   | 3/16                | -                                                   | -    | -             | -    | 8                                               | 10   | 11            | 13   |
| -4   | 1/4                 | 14                                                  | 16   | 20            | 22   | 14                                              | 16   | 20            | 22   |
| -5   | 5/16                | -                                                   | -    | -             | -    | 18                                              | 20   | 24            | 27   |
| -6   | 3/8                 | 24                                                  | 26   | 33            | 35   | 24                                              | 26   | 33            | 35   |
| -8   | 1/2                 | 37                                                  | 44   | 50            | 60   | 50                                              | 60   | 68            | 78   |
| -10  | 5/8                 | 50                                                  | 60   | 68            | 81   | 72                                              | 80   | 98            | 110  |
| -12  | 3/4                 | 75                                                  | 83   | 101-1/2       | 113  | 125                                             | 135  | 170           | 183  |
| -14  | 7/8                 | -                                                   | -    | -             | _    | 160                                             | 180  | 215           | 245  |
| -16  | 1                   | 111                                                 | 125  | 150           | 170  | 200                                             | 220  | 285           | 380  |
| -20  | 1-1/4               | 133                                                 | 152  | 180           | 206  | 210                                             | 280  | 285           | 380  |
| -24  | 1-1/2               | 156                                                 | 184  | 212           | 250  | 270                                             | 360  | 370           | 490  |

For Flat-Face O-Ring Seal





Thread

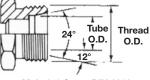
I.D.

Ŧ

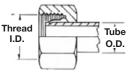
Thread

I.D.

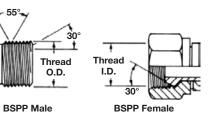
Female

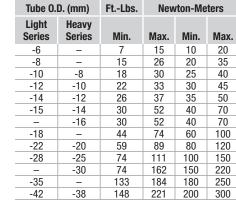

24° Cone with O-Ring

Female Universal


24° or 60° Cone

|                             | Size  |      | Lbs. | Newton-Meters |      |
|-----------------------------|-------|------|------|---------------|------|
| Fractional<br>Dash (Inches) |       | Min. | Max. | Min.          | Max. |
| -4                          | 1/4   | 10   | 12   | 14            | 16   |
| -6                          | 3/8   | 18   | 20   | 24            | 27   |
| -8                          | 1/2   | 32   | 40   | 43            | 54   |
| -10                         | 5/8   | 46   | 56   | 60            | 75   |
| -12                         | 3/4   | 65   | 80   | 90            | 110  |
| -14                         | 7/8   | 65   | 80   | 90            | 110  |
| -16                         | 1     | 92   | 105  | 125           | 240  |
| -20                         | 1-1/4 | 125  | 140  | 170           | 190  |
| -24                         | 1-1/2 | 150  | 180  | 200           | 245  |


DIN 24° Cone




Male 24° Cone, DIN 2353



Female Metric Tube





|      | Size                   | Ft   | Lbs. | Newton-Meters |      |  |
|------|------------------------|------|------|---------------|------|--|
| Dash | Fractional<br>(Inches) | Min. | Max. | Min.          | Max. |  |
| -4   | 1/4                    | 11   | 13   | 18            | 24   |  |
| -6   | 3/8                    | 19   | 28   | 26            | 38   |  |
| -8   | 1/2                    | 30   | 36   | 41            | 49   |  |
| -10  | 5/8                    | 37   | 44   | 50            | 60   |  |
| -12  | 3/4                    | 50   | 60   | 68            | 81   |  |
| -16  | 1                      | 79   | 95   | 107           | 129  |  |
| -20  | 1-1/4                  | 127  | 152  | 172           | 206  |  |
| -24  | 1-1/2                  | 167  | 190  | 226           | 258  |  |
| -32  | 2                      | 262  | 314  | 355           | 428  |  |

BSP 30° Inverted Cone